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ABSTRACT

Part A of this report examines several high-frequency models for

nonprincipal-plane scattering from a rectangular, perfectly conducting

plate. Two methods, the Method of Equivalent Currents and corner

diffraction coefficients, are considered. Formulations for

second-order Physical Theory of Diffraction equivalent currents and

for corner diffracted fields are presented. Comparisons are made

among the following plate models: first-order Physical Optics

equivalent currents, first-order Geometrical Theory of Diffraction

equivalent currents, first-order Physical Optics/Physical Theory of

Diffraction equivalent currents, second-order Physical Theory of

Diffraction equivalent currents, corner diffraction coefficients,

Moment Method, and experimental results. Results away from grazing

are accurate using only first-order terms. Near grazing, second-order

and corner diffraction terms improve the results for many cases.

Part B of the report investigates the pattern control of horn

antennas using lossy materials to coat the inner walls of the horn.

Integral Equation and Moment Method techniques are used to formulate

the problem. It is clearly demonstrated that side lobe level

reduction can be achieved using impedance surfaces on the inner walls

of the horn.
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PART A

NONPRINCIPAL-PLANE SCATTERING FROM FLAT PLATES --

SECOND-ORDER AND CORNER DIFFRACTIONS

I. Introduction

The modeling of a perfectly-conducting, rectangular plate for

scattering in nonprincipal planes using the Method of Equivalent (MEC)

currents was discussed in a previous report [I]. Two models using

only first-order equivalent currents were presented. The first model

used Geometrical Theory of Diffraction (GTD) equivalent currents

[2]-[3], which are well behaved for monostatic scattering but contain

singularities for bistatic scattering. A second model using Physical

Optics (PO) [4] and Physical Theory of Diffraction (PTD) [5]

equivalent currents was developed. These currents are well behaved

for both monostatic and bistatic RCS predictions. The GTD and PO/PTD

equivalent currents models give similar results and compare favorably

with moment method (MM) and experimental results away from regions

near and at grazing incidence. Near and at grazing incidence,

higher-order scattering and corner diffraction mechanisms were thought

to be significant factors in the total scattered field and a means of

including these components was desired.
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In this report, two new models of the plate for

nonprincipal-plane scattering are explored. The first is a revised

version of the PO/PTDmodel with second-order PTDequivalent currents

[6] included to account for second-order interactions amongthe plate

edges. The second model uses a heuristically derived corner

diffraction coefficient [7], [8] to account for the corner scattering

mechanism. The patterns obtained using the newer models are

comparedto the data of the previously reported models, MM, and

experimental results.

OR_NAt PA_£ iS

OF POOR QUALITY'
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II. Theory

A. Second-Order PTD Equivalent Currents

AS with many versions of the MEC, the second-order PTD equivalent

currents are formulated using the canonical perfectly conducting,

infinite wedge geometry which is used to approximate other geometries.

For the rectangular plate shown in Fig. i, each edge is modeled as an

infinite half-plane by setting the exterior wedge angle to 2_. This

is a valid approximation as long as the edges are electrically

isolated; thus, the accuracy of this model increases as the electrical

size of the plate increases. The general wedge geometry is shown in

Fig. 2. This geometry is applicable to both first- and second-order

equivalent currents. The directional vectors and angles are:

A

s' = the unit vector in the direction of incidence.

A

s = the unit vector in the direction of observation.

t = the unit vector tangent to the edge of interest,

directed so that it encircles the scatterer in a

counterclockwise manner.

n = the unit vector normal to the edge of interest, lying

on the illuminated face.

^

_o' = the angle between s' and the edge.

^

_o = the angle between s and the edge.

_' = the angle between the illuminated face and the

edge-fixed plane of incidence.

= the angle between the illuminated face and the

edge-fixed plane of observation.
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Fig. 2. Wedge geometry for equivalent currents derivation.
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= the skew angle of integration across the surface.

In terms of the directional vectors, the directional angles are:

-1 ^ ^

_o' = COS (s'" t) (la)

-i _ ^

_o = COS (S " t) (ib)

<E 31-I s'X t ^ ^
_' = cos ^ ^ X t • n

Is'×tl
(ic)

-i s X t ^ ^
= cos _ ^ ^ X t • n

{s× t{
A ^

For monostatic scattering, _ = _' _o = _ - Bo', and s = -s'F

(id)

For the

flat plate, the unit vector in the direction of incidence for the

geometry considered is:

^ ^ ^ ^ A

S' = -a r = -a x sinO'cos_' - ay sinO'sin_' - a z cos8' (2)

A different set of directional vectors and angles must be

formulated for each edge. The vectors for each edge are:

A A ^ A

Edge I: t I = ay n I = -a x

Edge 2: t 2 = -ay n 2 = a x

^ A ^ ^

Edge 3: t 3 = -a x n 3 = -ay

^ ^ A ^

Edge 4: t 4 = a x n 4 = ay

(3a)

(3b)

(3c)

(3d)

The resulting _o' functions for each edge are:

Edge I:

Edge 2:

cOSBo_ = -sine'sinG'

sin_o _ = Jl - sin28, sin2_ ,

cOS o = -cOS o 

sin_o _ = sin_o [

(4a)

(4b)

(4c)

(4d)
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Edge 3:

Edge 4:

cOS_o _ = sinS'cos_' (4e)

sin_o _ = /i - sin28'cos2_ ' (4f)

cOS_o_ : cOS_o_ (4g)

sin_o _ = sin_o _ (4h)

Using the _o' definitions, the _' functions can be expressed as:

-sinO'cos_' (5a)

Edge i: cos_l = sin_o[

cosS'

f

sin_l sin_ol

(5b)

Edge 2: cos_ 2 = -cos_l (5c)

sin_ 2 = sin_l (5d)

Edge 3: cos_ 3 = -sine'sin_' (5e)
f

sin_o3

COSS'

sin_3 - sin_o_

(5f)

Edge 4: cos_ 4 = -cos_3 (5g)

sin_ 4 = sin_ 3 (5h)

For each edge the tangential components of the incident electric

and magnetic fields are needed to determine the corresponding

equivalent currents Both soft and hard polarizations are considered.

The incident fields are:

Soft Polarization

i ^ -Jk.r

= a_ E o e

^

Hi = a8 (l/n) E o e -jk'r

(6a)

(6b)
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Hard Polarization

i ^ -jk.r

E = a 8 E o e (6c)n

i ^ -Jk.r

= -a_ (i/D) E o e -- -- (6d)

To simplify the rectangular plate analysis, the incident fields

are transformed to the rectangular coordinate system. The position

vector, r, is:

A ^ A

r = a× x + ay y + a z z (7)

The propagation vector, _, for the incident field is:

A A A A

k = -k a r = -k(a x sinS'cos_' + ay sinS'sin_' + a z cose') (8)

With respect to the rectangular coordinate system, the incident fields

are:

Soft Polarization

El = Eo eJk(xsinO'cos_'+ysin0's_n_'÷zcos0')

X [-a×sin0'+aycos_'] (ga)

H i = (i/7]) E o e jk(xsine'c°s_'+ysine'sin_'+zc°sS')

A A

X [axCOS8' cos_' +aycosS' sin_' +azsinS' ] (9b)

Hard Polarization

E i = E o e jk(xsin{9'c°s_'+ysin_)'sin_'+zc°s8')

X [a×cos8' cos_' +ayCOSO' sin_' +azsin0' ] (9c)

H i = - (1/19) Eo eJk(xsinS'cos_'*ysinS'sin_'+zcosS')

X [-axsin_' +ayCOSO' ] (9d)
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The scattered fields for far-field observations are expressed in

terms of the vector potentials:

E r _ 0 (10a)

E0 s -j_ [A0 + nF_ ]

E_ s -j_ [A_ - WF 8 ]

The vector potentials are:

(10b)

(10c)

-Jkr/

A - _ I I(x' y' ' e- - 4-_ _ , ,z ) R
J

c

d_' (lla)

-Jkr/

C I M(x',y' z') e
F = 4--_ ) ' R

C

de' (llb)

For far-field analysis, the following simplifications can be made:

A

R _ r - r'cos@ = r - r'. a r (for phase variation) (12a)

R _ r (for amplitude variation) (12b)

where

^ ^

r' = a x x + ay y (13)

for the flat plate oriented as in Fig. i. For phase variation:

R _ r - xsinS'cos_' - ysinS'sin$' (14)

Finally, the vector potentials for far-field scattering from the

plate become:

-jkr I jk(xsinS'cos_'+ysinS'sin_') d_e I(x,y, z) e
A - 4r_ r

C

(15a)

-jkr ( jk(×sinS'cos_' +ysinS' $in_')

C e ] M(x,y,z) eF 4_ r -- de

c

(15b)
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The integrals are evaluated along the perimeter of the plate in a

counterclockwise manner. On the surface of the plate, z=0. Also,

for each edge, the coordinates are:

Edge I: x = a -b s y _ b (16a)

Edge 2: x = -a -b _ y _ b (16b)

Edge 3: -a _ x _ a y = b (16c)

Edge 4: -a _ x _ a y = -b (16d)

To simplify the derivation, each vector potential integral is

represented as a sum of four integrals, each corresponding to an edge

of the plate. For the second-order currents, numerical integration is

used in evaluating the integrals. I and M must be determined

separately for each edge taking into account the individual

geometries. Again, each edge is viewed as the truncation of an

infinite half-plane.

The general geometry for the formulation of the second-order

currents is shown in Fig. 3. The directional vectors and angles are

for the edge of first-order diffraction defined above in the

^

description of Fig. 2. The diffracted ray travels along _ at a skew

angle of _o'. The axis of integration across the structure is again

A

_, which effectively eliminates all singularities except the Ufimtsev

singularity for forward observation at grazing incidence. The

distance from the first point of diffraction, O1, to the second point,

02, is _. The tangent vectors to the edge of first diffraction is t I

-12-
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and the vector at the second edge is t 2. These are oriented so that

they encircle the scatterer in a counterclockwise manner.

The second-order PTD equivalent currents components are

defined as:

where

f _ ^ • A

_2 t2 [ s × £_ ]
sin2_2

f 1 ^ ^ ^ f
I l S • [(t 2 X S) " 52 ]

sin2_2

(17a)

(17b)

^ ^ ^ ^

^ ^ If i_ t2 I e-Jk_ (_ • s) _f eJk_ (_ • s)K2 = x dq (17c)

7f
The surface fringe current density, 3 , is expressed in terms of the

f
exact fringe-current scattering solution to the wedge; therefore, K 2

consists of a contour integral in the complex plane that is integrated

^ f
along _ and evaluated only at the upper endpoint. _2 is evaluated

using the Method of Steepest Descent and the result for a half-plane

is [5] :

f 4vr-2 Im x t21 e jkZ
K_2 _ F IV L(I-_)] X

jksin2_o ' (_+cos_') _ i-_

A ^ , ,% ^ .

[nl(t I" Hol)COS(_'/2) + tl(t I" Hlo){IcOt_o'COS(_'/2)

A ^ .

+ tl(tl'S3) (l/n) (l-_)cSC_o'Sin(_' /2) ]

[_F L (l+cos_') ^ A __i A ,', i

[nl(t I- Ho) - t I (t I" Ho)COt_o'cos_'
V-Y
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+ tl(t I" EoI) (i/D)csc_o'sin¢']

The expressions for the currents simplify to:

(18)

^ f sin_2
M2 = -N n2" _2 sin_ 2

(19a)

f " f " f

12 = t 2. _ - n 2. K2 cot_2cos_ 2 (19b)

f

where K 2 is given in (18) for a half-plane. Other necessary

quantities are:

or

^ ^

t I , t 2 =

A ^

n I , n 2 =

A

the unit vectors tangent to the edges of first-

and second-order diffractions, respectively,

oriented so that they encircle the scatterer in a

counterclockwise manner.

the unit vectors normal to the edges of first- and

second-order diffractions, respectively, pointing

inward and lying on the illuminated surface of the

scatterer.

the unit vector in the direction of integration skewed

at an angle 0o' with respect to the edge of the wedge

so that it represents the grazing diffracted ray.

A A

= n I sin_o' + t I cos_o' (20a)

^

the distance along _ from O 1 to 02, the points of

first- and second-order diffraction, respectively.

L = k£ sin2_o ' (20b)

or

F(x) = the modified Fresnel transition function.

o0

2 I jr2
F(x) = 3V_7_ e jx e- dt

X

(20c)
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COS_ - COS2_0 ' = 1 - 2 sin2(_/2)
=

sin2_o ' sin2_o '

^ ^

= the angle between _ and s.

cos_ = _ • s = sin_o'Sin_icos¢ l + cOS_o'COSB I

(20d)

(20e)

where

_i, _i =

^

the polar angles of s in the coordinate system

local to the edge of interest, the ni,Y,t i

coordinate system.

A ^

cos_i = s • t i (20f)

^ A

sin_icos_i = s • n i (20g)

_ A

sin_isin_i = s • y (20h)

The directional angles _o', 60, _', and _ are defined in (4) and (5).

f

The second-order diffracted field is obtained by substituting M 2

f

and 12 from (19) into the vector potential integrals of (ii) ,

integrating, and then substituting into (10). Numerical integration

must usually be used to find the integrals of (Ii) . The limits of

integration on the integrals of (II) are found using ray tracing. The

area that the first-order fields affect is bounded by the two extreme

first-order diffracted rays. Fig. 4 illustrates this procedure. Edge

AB illuminates the curve from A' to B'. Integration is along the

boundary from A' to B'. Often illuminated regions overlap due to

interactions from many edges.

The total first- and second-order fields are found by adding the

fields due to scattering by the PO currents, the PTD components, and

-16-
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the second-order components. These fields are valid for all

directions of illumination and observation, on and off the Keller cone

of diffracted rays, except for the forward direction due to grazing

incidence where an infinite singularity exists. This is the Ufimtsev

singularity.

In term_ of the directional vectors, the directional angles are:

^ ^

cos_ 2 = s • t (21a)

A

sin_2cos_2 = S • n 2 (21b)

^ A

sin_2sin_ 2 = S • y (21c)

For each edge of second-order diffraction, the directional vectors

are :

A A A ^

Edge i: t21 = ay n21 = -a x (22a)

Edge 2: t22 = -ay n22 = a x (22b)

Edge 3: t23 = -a x n23 = -ay (22c)

Edge 4: t24 = a x n24 = ay (22d)

Using the definitions of (22) in the equations of (21) along with the

^ sin_2 cot_2
definition of s' from (2), the factors sin_2 and cos_2 in (19)

simplify to the following for each edge:

sin_21 cose'
Edge I: = (23a)

sin_21 sin28,cos2_,+cos20,

cot_21cos_21 = -sin2e 'cOs_'sin#" (23b)

2., 2 ,sin28'cos _ +cos 8

-18-



s in_ 22
Edge 2 : --

sin_22

= Cos8' (23c)

sin28 ' cos 24' +cos28'

-sin 28' cos#' sin_'

cot_22cos_22 = (23d)

sin28 , cos2_ , +cos28 '

sin_23 tosS'
Edge 3: _ = (23e)

sin_23 4'sin2@ , sin 2 +cos2@ ,

2

cot_23cos_23 = sin 8'cos_'sin_' (23f)

sin28 , sin2# ' +cos28 '

sin_24 tosS'
Edge 4: - = (23g)

sin_2# sin28, sin2_ , +cos2@ ,

2

cotm24cos'h241_w = sin 8'COS_'sin_' (23h)

sin28 , sin2_ , +cos2e ,

The remaining factor in the equivalent currents equations that

K fmust be determined for each edge is _ 2. The preceding vectors and

functions refer to the edge of second-order diffraction only. The

vectors and functions involved in the definition of _ involve the

^ ^

edge of first-order diffraction only except for the I_ X t21 factor

which involves directional vectors from the edges of both first- and

second-order diffraction. For a half plane, K_ is given in (18).

The t I and n I vectors are defined for each edge in (3). The

incident fields, H i and E i are defined in (9). F(x) is the modified

Fresnel transtion function of (20c) . The directional angles _o' and

are the same as those introduced at the beginning of this section.
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All the necessary functions of these angles derive easily from the

relations of (4) and (5).

^

The unit vector in the direction of integration, _, for each edge

A ^ ^

Edge l: _i = -ax sin_o_ + ay cos_o [

^ ^ ^

Edge 2: ¢2 = ax sinSo2 - ay cOSBo_

^ ^ ^

Edge 3: ¢3 = -ax c°s_o_ - ay sin_o _

A ^ A

Edge 4: _4 = a× cos_o _ + ay sinBo_

In general the term g is defined as:

cos_ - cos2_o '

is:

where

^ A

COSg" = _ • S

For each edge, the _ functions are:

are :

(24a)

(24b)

(24c)

(24d)

(25)

(26)

Edge i:

Edge 2:

Edge 3:

Edge 4:

cos_l = -sin_o[sine'cos¢'+cos_o_sine'sin _' (27a)

cos_2 = sin_o_sinS'cos¢'-cos_o_sine'sin ¢' (276)

f

COS_3 = -sin_o_sinS'cos_'-cos_o3sinS"sin_' (27c)

cos_4 = sin_o_sine'cos_'+cos_o_sinS'sin _' (27d)

Using these definitions and those of (4), the _'s for each edge

cos_] - cos2Bo[

Edge I: _i = (28a)

sin2_o[

cos_2 - coS2Bo_
Edge 2: _2 = (28b)
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2 i

COS_3 - COS 6o 3

Edge 3: _3 = (28c)
2 ,

sin 603

2 ,

cos_4 - cos _o4

Edge 4: _4 = (28d)
2 ,

sin _o 4

The coupling terms between the edge of first-order diffraction

A A

and the edge of second-order diffraction are the I_ X t21, the L, and

f

the Z terms. For each pair of intersecting edges a different _2

factor results due to these terms. Due to symmetry, one needs to

consider the range 0 ° s _' _ 90 ° only for the plate rotation angle.

This eliminates having to consider interactions between some edges.

The remaining interactions that one must consider are:

(i) ist-order diffraction from edge 1 to edge 4

(2) ist-order diffraction from edge 1 to edge 2

(3) Ist-order diffraction from edge 2 to edge 4

(4) Ist-order diffraction from edge 2 to edge 1

(5) ist-order diffraction from edge 3 to edge 2

(6) ist-order diffraction from edge 3 to edge 4

(7) ist-order diffraction from edge 4 to edge 2

(8) ist-order diffraction from edge 4 to edge 3

The I_ X t21 terms for each of these interactions reduce to:

^ ^ t

Edge 1 to Edge 4: I_i X t24 I = cos_ol

^ ^ I

Edge 1 to Edge 2: I_l X t22 I = sin_ol

^ ^

Edge 2 to Edge 4: I_2 X t24 I = cos_o_

(29a)

(29b)

(29c)
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^ ^

Edge 2 to Edge i: I_2 X t211 = sin_o_ (29d)

^ ^

Edge 3 to Edge 2: I_3 X t22 I = cOS_o_ (29e)

^ ^

Edge 3 to Edge 4: I_3 X t24 I = sin_o_ (29f)

A

Edge 4 tO Edge 2: I_4 X t22 I = cOS_o_ (29g)

^ ^

Edge 4 to Edge 3: I_4 X t23 I = sin_o_ (29h)

The distance parameter, _, designates the distance from the point

of first-order diffraction to the point of second-order diffraction

^

measured along _, the grazing diffracted ray. The _ parameters are

constant functions of incidence angle only for opposite edge

interactions but are functions of distance along the edge for adjacent

edge interactions. Fig. 5 shows the geometry for determining the

parameters for interactions between edges 1 and 2 and edges 1 and 4.

The geometries for the other interactions are similar. The limits of

integration in the vector potential integrals of (15) vary according

to the illumination of the edge of second-order diffraction. The

extent of illumination is bounded by the grazing diffracted rays from

the edge of first-order diffraction. Thus, the limits of integration

are a function of the incidence angle. The distance parameters, _ and

L, along with the limits of integration are given below for each pair

of interacting edges. Recall that:

L = k_ sin2_o ' (30)

-22-
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Edge 1 to Edge 4

a - x 4

r

_14 - cos_ol

LI4 = k_14sin2_o_

Limits of integration: -a _ x s a

a - 2btan(_-_') s x s a

-i

for _o' 1 S _ - tan (a/b)

-i
• >- 7[ - tan (a/b)

for _o I

Edge 1 to Edge 2

2a

co  o[

. 2 ,

LI2 = k_12 sln _o I

Limits of integration:

2a
-b _ y s b

,)
tan(_-_Ol

-I
' _ _ - tan (a/b)

for _oi

Edg____ee 2 t__o Edge 4

a + x 4

_24 - sin_o2

2 ,

L24 = kZl4sin _o 2

-i
• -_ tan (a/b)

Limits of integration: -a -< x -< a for _o 2

-I
' z _ - tan (a/b)

' for _o 2-a -< x -< -a + 2btan_o 2

Edge 2 to Edge 1

2a

_21 - sin_o2

2 ,

L21 = k_21 sin _o 2

(31a)

(31b)

(31c)

(31d)

(31e)

(3!f)

(31g)

(31h)

Limits of integration:

-b __ y __ b
2a

t

tan (_o2)

' _<for o_

-i
tan (a/b)
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Edge 3 to Edge 2

b - Y2

_32 = sin_o2

L32 = k_32sin2_o_

Limits of integration: -b -< y -_ b

b - 2atan_o3 -< y -< b

Edge 3 to Edge 4

2b

_34 - sin_o, 3

L34 = k_34 sin2_o'3

Limits of integration:

2b
a s x _ a

tan_o_

Edge 4 t__o Edge 2

b + Y 2

2 ,

L42 = k_42sin _o 4

Limits of integration: -b _ y _ b

-b -< y -< -b + 2atan(_-_o _)

Edge 4 to Edge 3

2b

Z43 - cosSo_

f

L43 = k_43 sin2_o4

-I
• z tan (b/a)

for _o 3

for _o 3 > tan-l(b/a)

-1
for Go' -< tan (b/a)

3

-i
' _ _ - tan (b/a)

for _o 4

-I
' a tan (b/a)

for _o 4

(311)

(31j)

(31k)

(311)

(31m)

(31n)

(31o)

(31p)

Limits of integration:

2b
a

tan (K-_o_)

_< x _< a , <
for /9o4

-i
- tan (b/a)
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The second-order fields are determined by substituting the

current componentsfor each pair of interacting edges into the vector

potential equations of (Ii) and using (10). For opposite edges the

integrals reduce to closed-form expressions. The adjacent-edge

integrals must be evaluated numerically. Just as for the first-order

diffractions, integration is with respect to either the x or y

coordinate so that the integrals involved simplify to the following:

Edge 1 to Edge 4

I a =x_ e_Jk_l4 F(% / Ll4(l-gl) ) e jkxslno'c°s_' dx (32a)
14

x 1

I b =x_ jkxsirlS' cos_'e -jk_14 F(%/ LI4 (l+cOS_l) ) e dx (32b)
14

x 1

Edge I to Edge 2

ii 2 = Y_ eJ2kysinS'sin_' dy

Yl

= -2bsinc(2kbsinS'sin_') -

Edge 2 to Edge 4

4ak s in_), sin_, 1
exp [- j t an (T[__o[)

j2k sinS' sin_'

I a =x_ e_Jk_24 F(%/ L24 (i-_2) ) eJkxsinS'cos_' dx
24

x 1

I b =x_ e_Jk_24 F(%/ L24(I+cos_2 ) ) e jkxsin8'c°$_' dx
24

x I

(32c)

(32d)

(32e)
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Edge 2 to Edge 1

I21 = Y_ej2kysinS'sin_' dy

Yl [ 4ak ]exp -j tango2 sinS'sin_'
= 2bsinc(2kbsin8'sin_') + j2k sinS' sin#'

(32f)

Edge 3 to Edge 2

ia = __2 e_Jk_32F(_ L32(I-;13) ) ejkysinO'sin_' dy
32 Yl

b i2e-jk_32 F(_ L32(l+cos_3) ) eI = - JkysinS' sin_' dy

32
Yl

Sdg_____e_3to Sdg____e_4

I34 x_ e j2kxsinS' cos_' dx

x I

4bk ,
exp -j tango3

s inS'cos_']

j2k sinS' cos_'

(32g)

(32h)

(32i)

Edge 4 to Edge 2

I a = -i 2 e -jk_42 F(%/ L42(I-;14) ) e jkysinS'sin_' dy
42

Yl

b _2e-Jk_42 F(%/ L42(I+cos_4) ) eJkysinE),sin_,dyI42 = -

Yl

Edge 4 t__o Edge

I34 = x_ e j2kxsinS' sin_' dx

x I

4kb
exp J tan (/[-60' 4)

j2k sinS' cos_'

(32j)

(32k)

(321)
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B. Corner Diffraction

Becausethe GTDand UTDdiffraction coefficients are derived from

the exact solution to scattering by an infinite wedge, the

coefficients fail to account for the joining of two edges at a corner.

For certain aspect angles, the scattering from the corners is

significant. Pathak and Burnside developed a heuristic corner

diffraction coefficient [7]-[8] based upon an appropriate, although

non-rigorous, modification of an asymptotic evaluation of the

radiation integral due to the equivalent edge current that would exist

along the scattering edge if the corner were not present. One major

flaw in the coefficient is that it is non-unique for certain

backscatter angles near normal incidence [9], thus a

rigorously-developed corner diffraction coefficient is desirable.

However, Pathak and Burnside's coefficient is successful for many

plate geometries and maybe used with caution.

The geometry for a corner in a planar surface is shownin Fig. 6.

The total diffracted field from one corner is the sumof contributions

from each of the edges comprising the corner. The general form of the

corner diffracted field is:

-jks
/_ s' / s(s+sc) e (33)E E_C(s)=-_i(Qc) "D c "(s'+s") V _-- S

where

Ei(Q c) = the incident field at the corner.

DC = the dyadic corner diffraction coefficient.
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Fig. 6. Geometry for a corner in a planar surface.
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S = the distance from the corner to the receiver.

s' = the distance from the source to the point of edge

diffraction.

s" = the distance from the point of edge diffraction to the

receiver.

s c = the distance from the source to the corner.

-jks
e = the phase factor.

The dyadic corner diffraction coefficient, like the ordinary

diffraction coefficient, is in terms of parallel and perpendicular

components:

^i ^dc c ^i ^dc c

_c = eh eh Dh + es es Ds (34)

C C

D h and D s are the hard and soft corner diffraction coefficients,

respectively, given by the following:

- j7[/4 /sin_osin_o c

Ds,hC __e2K_____ Cs,h(QE) cOS_oc _ cOSEc F[kLca(_+_oc - _c ) ] (35)

where

-JT[14
-e

Cs,h (QE) = ×

2_ 2Kk sin_o

{ -F [kLa (B) ]

cos (/3 /2)

_ F[kLa(_+) ]
+

cos(H+/2)

La (_) /_

F kLca(K+_oc _ _c )

[ La (_+) /I

F[_Lca_+_--oc C _c )

(36)
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F is the Fresnel transition function given by:

0O

2

F(x) = 2jYr_x e jx _ e -jT dT

as:

+

_-=0_+0,

(37)

(38)

_o is the Keller cone angle. The other angles and functions are:

the angle between the incident ray at the corner and

the edge of interest.

the angle between the diffracted ray at the corner

and the extension of the edge of interest as shown in

Fig. 3-5.

a(_) = 2cos2(_/2) (39a)

s r s" 2

L- sin -_-(8o) (39b)
(s'+s")

s s
c (39c)

L c - Sc+S

These fields simplify considerably for far-field, plane-wave

scattering from the rectangular plate.

The RCS of the flat plate in all planes can be determined using

only the corner diffraction coefficient. Near and at normal

incidence, this formulation fails due to the nonreciprocal nature of

the corner diffraction coefficient. To alleviate this problem, near

and at normal incidence, the GTD equivalent currents solution is used;

and the corner diffraction results are used away from the problem

area. The total scattered field from a corner consists Of terms for

-31-



each of the adjoining edges; therefore, eight terms are needed for the

rectangular plate.

The general expression for the corner diffracted field due to one

of the two adjoining edges is given in (33). For far-field

scattering, s s sc _ s' _ s" _ _ ; therefore:

Ec(s) = -Ei(Qc) " Dc e-Jks (41)

for far-field scattering.

For far-field backscattering, Lc = m so that:

F [kLca (_+_oc-Sc) ] -_ 1 (42)

Also, _oc = K - _c and _' = _ so that:

_ -tango
(43)

The diffraction coefficient simplifies to:

-j_/4
C -e

= Cs, h(QE ) tango
Ds'h %/ 2_------k _ -- (44)

For far-field backscattering, L _ L c s m and Cs,h(QE) simplifies to:

Cs,h (QE) =

-JK/4
-e

2_ 2_k sin_o

Ii IIcos_ F (45)
2_COS 2 (_-_o)

The total field scattered due to one edge adjoining at a corner

simplifies to:
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I jks 1
__c E i J e- X
E s,h(s) = (Q_) 8_kcos_o

The top view of the plate geometry for the corner diffraction

analysis is shown in Fig. 7. The incident fields are the same as in

(9). The field must be determined at the corner of interest. The

corners are designated as the following:

Corner A: x = a y = b

Corner B: x = -a y = b

Corner C: x = -a y = -b

Corner D: x = a y = -b

The angles _ are the same as those given in (5). The _ angle used for

the scattering component for a designated edge and corner is the

associated with the edge. For example, the _i angle is used for

scattering from corner A due to the presence of edge I.

The _o angle is the angle between the -s' and the edge or:

cos_o = -s ' c (47)

where

^

c = the unit vector tangent to the edge of interest pointing

outward from the corner of interest.

The vectors and angular functions for each corner/edge combination

are :
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A

C

(-a,b)

C
B2

Edge 2

A

C
(:::2

Edge 3
A3 (a,b)

A

C
A1

Edge 1

_ X

(-a,-b) _: c4 Edge4 c 04 (a,-b)

Fig. 7. Top view of the plate for the corner diffraction analysis.
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Corner A

Corner B

Corner C

Corner D

A ^

Edge I: CA1 = -ay COS_oAI= -sine'sin_' (48a)

A A

Edge 3: CA3 = -a x COS_oA3= -sinO'cos_' (48b)

^ A

Edge 2: CB2 = -ay COS_oB2 = -sine'sin_' (48c)

A A

Edge 3: CB3 = a× cos_oB3= sinS'cos_' (48d)

,_ A

Edge 2: cc2 = ay coS_oc2= sine'sin_' (48e)

^ ^

Edge 4: cC4 -- a× cOS_oc4= sin0'cos_' (48f)

Edge I: CDI = a F COS_oDI= sin0'sin_' (48g)

Edge 4: CD_ = a× COS_oD4 = -sinS'cos_' (48h)

The final parameter that must be designated is s, the distance from

the corner to the observation point. The geometry indicating these

distances is in Fig. 8. For far-field scattering, the following

approximations are used:

Amplitude: s A _ s B _ s C _ s D _ s

sinS'

Phase: s A _ s
2 2(a2+b 2) (cos_'+sin_')

(49a)

(49b)

sin@'

SB _ S
2 2 (a2+b 2) (sin#'-cos#') (49c)

Sc _ s + --

sin@'

2(a2+b 2) (cos_'+sin_') (49d)

sinS'

s D _ s
2 2(a2+b 2) (cos_'-sin#') (49f)
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Edge 4

Fig. 8. Three-dimensional view of the plate for corner diffraction.
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The total field scattered by the plate consists of a term of the form

of (46) for each edge joined at a corner. TheRe eight terms are

added to arrive at the total field.
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III. Results

Computations were made for a square plate with each side equal to

5.73 I. Comparisons are made among the following: MM and

experimental results, the PO equivalent currents model, the GTD

equivalent currents model, the PO/PTD equivalent currents model, the

PO/PTD/2nd-order equivalent currents model, and the corner diffraction

coefficients model.

O

Fig. 9 shows soft polarization results for a 30 rotated plate.

Even the PO equivalent currents, which account only for surface

scattering, give good results near normal incidence. As the angle of

incidence moves away from normal, there is a need for components to

account for edge diffraction. The GTD and PO/PTD models greatly

improve the results in the grazing regions, although there remains

some disagreement which points to the necessity for higher-order and

corner diffraction components. Fig. 10 shows results from the PO/PTD

model with the second-order PTD coefficients added and also shows

results from the corner diffraction coefficient model. Since the

corner diffraction coefficients are inaccurate near and at normal

incidence, the GTD equivalent currents solution is used in the region

±5 ° on either side of the normal direction and the corner diffraction

solution is used elsewhere. The second-order currents do not improve

the results for this case and even result in worse agreement than that

-38-
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obtained using the first-order models. The corner diffraction model

improves the results near grazing and agrees with the first-order

models away from grazing, indicating that the corner diffraction

mechanism is the more crucial scattering mechanism for this plate

rotation and polarization.

Fig. II shows the hard polarization results using the flrst-order

models for the same plate configuration rotated 30 ° Near and at

grazing there is a major discrepancy between the first-order,

high-frequency models and the experimental and MM results. The PO/PTD

models with the second-order components added and the corner

diffraction coefficients model yield much better results although

discrepancies still exist. These results are displayed in Fig. 12.

O

The soft polarization results for the same size plate rotated 45

are in Fig. 13. One would expect that corner-diffraction would play a

major role at this angle of rotation so that the large discrepancies

of the first-order models near grazing incidence are not surprising.

The addition of second-order equivalent currents yields excellent

results in this case. Surprisingly, the corner diffraction model does

not improve the results. These results, shown in Fig. 14, indicate

that for this angle of rotation and polarization second-order

components are the major contributing factors.

Hard plarization results for the same rotation angle are shown in

Figs. 15 and 16. Just as for the 30 ° rotated plate for hard

-41-
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polarization, the first-order, high-frequency models do not produce

good results near the grazing regions. The corner diffraction model

greatly improves the results; however, the addition of second-order

components does not result in an improved model. This indicates that

the corner diffraction mechanism is dominant for this configuration.

IV. Conclusions

The nonprincipal-plane scattering from a rectangular flat plate

was considered. Comparisons among five high-frequency models, MM and

experimental results were made. Near normal incidence all the models

agreed; however, near grazing incidence a need for higher-order

and corner diffraction mechanisms was noted. In many instances the

second-order and corner-scattered fields formulated in this report

improved the results.
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PART B

PATTERN CONTROL OF HORN ANTENNAS

I. Tasks Accomplished

During this period, the computations of the impedance elements

have been completed. These include interactions between the two

electric current modes, the electric current mode and the magnetic

current mode, and the two magnetic current modes. Especially, an

accurate and efficient formulation of computing interactions between

electric current mode and magnetic current mode has been accomplished.

This, together with other subroutines we have developed, enables us to

fill-in all the elememt in the matrix.

After the fill-in of the impedance elements in the matrix, the

forward problem is accomplished. That is, given the specification of

the horn and the excitating waveguide mode, the radiation pattern of

the antenna based on the integral equation can be obtained.

An example case was run for a standard X-band gain-horn (DBG-520)

with the configuration in Figure i. The H- and E-plane patterns of

this horn antenna with perfectly conducting walls are shown

respectively in Figures 2 and 3. Comparison with the gain pattern

available from the manufacturer for up to the first side lobe shows
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good agreements, although the cross polarization has not yet been

accounted for.

To investigate the effect of the lossy coating on the radiation

pattern, two sets of the lossy materials were used to cover the top

and bottom walls of the horn. This is intended to improve the E-plane

pattern. The plots shown in Figures 4 and 5 are obtained by uniformly

covering the top and bottom walls with a layer of AISb with a

thickness of 0.001A o ( 3 x 10-5meters). The material has a relative

dielectric constant of ii and a resistivity of 0.005 _.m. The

resulting E-plane pattern shows about 2-dB improvement in the

sidelobes. Figure 6 and Figure 7 are obtained based on a material

which has a relative dielectric constant of 3 and a sheet resistance

of 1500 _ per square. The thickness of this material is 2 mils (5.08

-5
x 10 meters ) . The resulting E-plane pattern shows about 3-dB

improvement in the first sidelobe and 4-dB improvement in the second

sidelobe.

Further improvement can be expected by increasing the thickness

of the coating. However, the validity of our impedance boundary

condition becomes questionable. A better impedance condition has been

developed; however it has not yet been implemented in the computer

program.

In the moment method solution of this project, the computations

of the matrix elements are the most tedious part of the work. We have
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basically fullfilled this task. Although we still did not have time

to connect all parts of the work together to realize the synthesis

problem, we can say we are progressing well toward that goal.

II. Future Work

I o

Future work will be concentrated on the following items:

i. To include the cross polarization components of the

equivalent magnetic currents on the two appertures.

2. To compare this integral equation method with another

rigorous method by H. Patzelt and F. Arndt [I].

3 To investigate the realization of the sheet impedance needed

to control the radiation pattern, and to extensively verify

the validity of the impedance boundary condition.

4. To reassemble the matrix equation to solve the synthesis

problem as was presented in the previous report.
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